Sunday, 18 November 2018 12:14

Deceptive Dogmatic Reporting Despite Successful Chiropractic Outcomes

Written by 
Rate this item
(22 votes)

Deceptive Dogmatic Reporting Despite Successful Chiropractic Outcomes

Revealing the deception of low back pain naturally resolving

…and the dogma of non-specific back pain


Mark Studin, DC
William J. Owens DC
Timothy Weir, DC 


Citation:Studin M., Owens W., Weir T. (2018) Deceptive Dogmatic Reporting Despite Successful Chiropractic Outcomes, American Chiropractor, 40 (11) 10, 12-15

A report on the scientific literature

Over the past decade, there has been a growing body of evidence demonstrating the “how and why” of chiropractic evidenced-based results. However, there has also been a historical level of reporting dogmatic issues related to the “the natural history of back pain” and “non-specific back pain” that deceptively enter and intersect the conversation to apparently discredit “pro-chiropractic” evidenced-based research that has persisted in contemporary literature. This review is centered on those issues, and the references for the above comments will ensue in the paragraphs below.

The National Institute of Neurological Disorders and Stroke reports “Most low back pain is acute, or short-term, and lasts a few days to a few weeks. It tends to resolve on its own with self-care, and there is no residual loss of function.” Kaiser Permanente, a national health system reports, “For most patients with back pain, the condition will improve within a few days or weeks.”

Kaiser Permanente goes on to report, “The primary goal of treatment is to maximize function and quality of life, rather than to eliminate pain. Some ongoing or recurrent pain is normal and not indicative of a serious problem. Avoid exposing the patient to unhelpful or possibly risky interventions. As a general rule, an intervention in which the patient is an active participant (e.g., physical therapy, walking, stretching, yoga) rather than a passive recipient (e.g., chiropractic, massage, acupuncture) is deemed to have greater potential to promote self-efficacy and self-management skills in the long term.”

Gedin, Edmar, Sundberg, and Burström in 2018 reported “Patients with acute back pain reported statistically significant and MCID (Minimal Clinically Important Difference) improvements in back pain intensity, back disability, HRQoL (Health-Related Quality of Life instrument), and statistically significant improvements in self-rated health, over four weeks following chiropractic care. Patients with chronic back pain reported statistically significant, albeit smaller and non MCID, changes for all PRO except self-rated health.

Interestingly, Gedin et al. have a significant level of statistics of demonstrating percentages of subjects who showed improvement and choose not to report that in the written part of the report, thereby not rendering a statistical interpretation. However, they included a caveat to perhaps minimize the positive results by reiterating the same deceptive dogma as discussed above. Gedin et. al then reported “However, it has been suggested that 90% of patients with acute low back pain recover within six weeks (van Tulder et al., 2006), which may also help explain the current findings of rapid improvements.(pg. 16) This opinion published in 2018 was referenced and supported by a 12-year old study which clearly ignored the contemporary literature.

Tamcan, Mannion, Eisenring, Horisberger (2010) reported on the only population-based study these authors were able to identify and concluded “When the 12-month follow-up period was divided into four equal time periods and, subsequently, clusters, it was seen that the majority of individuals placed in the moderate persistent [pain] cluster on the basis of the first 3 months data remained in this cluster at the following intervals. A reasonable consistency across time was also found for the clusters mild persistent and severe persistent. In contrast, the consistency of membership for the cluster initially identified as fluctuating was low, especially after six months.” (pg. 455-456) This study, which again is the only identified population-based study indicates that pain does not resolve “naturally” as was reported: “fluctuation was low, especially after six months.”

Knecht, Humphyres and Wirth (2017) reported on the recurrence of low back pain and stated, “Only 1 in 3 LBP (low back pain) episodes completely resolve within a year, and the percentage of LBP that goes from acute to chronic varies among studies from 2% to 34%.” Knecht et. Al (2017) also went on to report “Patients presenting with a subacute problem, lasting for more than 14 days at baseline, were at higher odds for a recurrent course, whereas the odds for a chronic course were higher only for patients presenting with a chronic problem (3 months) at baseline. Downie et al. reported that pain duration of more than five days was a factor that negatively affects prognosis. Similarly, duration of the current episode emerged as the most consistent factor for prognosis after one year in a study by Bekkering et al. and even predicted disability after five years. These findings suggest on the one hand that it might be prudent to seek professional advice [referenced chiropractic care in the article] early on in the pain episode.” (pg. 431)



These papers a part of the research trend supporting what the chiropractic profession has known all along, the natural progression of low back pain resulting in resolution is based on dogma and not supported by the research evidence. Additionally, the low back pain care path reported previously by Kaiser Permanente appears to be biased towards the denial of care and not consistent with the published literature.

Gedin et. Al (2018) also report, “it has been estimated that the vast majority of back pain cases is of non-specific origin.” (pg. 3) The concept of simply focusing on the treatment of non-specific back pain would render chiropractic no different than physical therapists when focusing on the “non-specific” nature of spine pain as the arbiter for care while the focus must be on the biomechanical compensation and individual motor units of the spine. Previous literature has verified that the supposition that “non-specific” is synonymous with ‘unobjectifiable” is erroneous since it was previously reported that chiropractic treats definite biomechanical changes in the motor units of the spine, therefore resulting in “very specific” biomechanical pathology.

Panjabi in 1992, presented a detailed work explaining how the biomechanical systems within the human spine react to the environment, how it can become dysfunctional and cause pain. He stated “Presented here is the conceptual basis for the assertion that the spinal stabilizing system consists of three subsystems, the vertebrae, discs, and ligaments constitute the passive subsystem, all muscles and tendons surrounding the spinal column that can apply forces to the spinal column constitute the active subsystem and finally, the nerves and central nervous system comprise the neural subsystem, which determines the requirements for spinal stability by monitoring the various trans­ducer signals [of the nervous system] and directs the active subsystem to provide the needed stability.” He goes on to state, “A dysfunction of a component of any one of the subsystems may lead to one or more of the following three possibilities, an immediate response from other subsys­tems to successfully compensate, a long-term adaptation response of one or more subsystems or an injury to one or more components of any subsystem.”


Panjabi continues, “It is conceptualized that the first response results in normal function, the second results in normal function but with an altered spinal stabilizing system, and the third leads to overall system dysfunction, producing, for example, low back pain. In situations where additional loads or complex postures are anticipated, the neural control unit may alter the muscle recruitment strategy, with the temporary goal of enhancing the spine stability beyond the normal requirements.” (pg. 383) This is where the idea of biomechanical compensation was identified.



Panjabi’s lifelong work summarized in the above work is the basis for the underlying mechanics of spine pain that does NOT correlate well to anatomical findings. Anatomical findings are fracture, tumor or infection and allopathy has labeled anything else “non-specific low back pain” which continues to maintain a dogmatic perspective in both clinical decision making and all too often, the literature, despite compelling evidence to the contrary.



Cramer et al. (2002) further clarified the biomechanics of spinal failure at the motor until level and reported, “One component of spinal dysfunction treated by chiropractors has been described as the development of adhesions in the zygapophysial (Z) joints after hypomobility. This hypomobility may be the result of injury, inactivity, or repetitive asymmetrical movements… one beneficial effect of spinal manipulation may be the “breaking up” of putative fibrous adhesions that develop in hypomobile or ‘fixed’ Z joints. Spinal adjusting of the lumbar region is thought to separate or gap the articular surfaces of the Z joints. Theoretically, gapping breaks up adhesions, thus helping the motion segment reestablish a physiologic range of motion.” (p. 2459)

Evans (2002) reported, “on flexion of the lumbar spine, the inferior articular process of a zygapophyseal joint moves upward, taking a meniscoid with it. On attempted extension, the inferior articular process returns toward its neutral position, but instead of re-entering the joint cavity, the meniscoid impacts against the edge of the articular cartilage and buckles, forming a space-occupying ‘ lesion’ under the capsule: a meniscoid entrapment. A large number of type III and type IV nerve fibers (nociceptors) have been observed within capsules of zygapophyseal joints. Pain occurs as distension of the joint capsule provides a sufficient stimulus for these nociceptors to depolarize. Muscle spasm would then occur to prevent impaction of the meniscoid.” (pg. 252)

Evans (2002) continued, “an HVLA manipulation, involving gapping of the zygapophyseal joint reduces the impaction and opens the joint, so encouraging the meniscoid to return to its normal anatomical position in the joint cavity. This ceases the distension of the joint capsule, thus reducing pain.”  (p. 253)

The involvement of nociceptors and nociceptive impulses stimulates the cortical regions of the brain which evokes a cortical response to that noxious stimuli. Haavik et al. (2017) reported the effects of a chiropractic spinal high velocity-low amplitude adjustment by stating “These results are consistent with previous findings that have suggested increases in strength following spinal manipulation were due to descending cortical drive and could not be explained by changes at the level of the spinal cord.” (pg. 1)

The persistent utilization of “non-specific” in reference to specific biomechanical alterations and failure in the human spine is dogmatic and deceptive since it “lumps together” all types of manual treatment, where chiropractic, based upon its unique application differs from other forms of manual therapy performed by physical therapy, acupuncture, and massage therapy. It differs in the ability of chiropractors to diagnosis and manages spinal compensation. In comparison to each other, each discipline is disparate in goals, application, and science and when not considered as such, lends itself to continue deceptive dogmatic arguments ignoring the evidenced-based truths of chiropractic.


  1. The National Institute of Neurological Disorders and Stroke (2018) Retrieved from
  2. Kaiser Permanente, Non-specific Back Pain Guidelines (2017) retrieved from”
  3. Gedin, F., Dansk, V., Egmar, A. C., Sundberg, T., & Burström, K. (2018). Patient-reported improvements of pain, disability and health-related quality of life following chiropractic care for back pain–A national observational study in Sweden. Journal of Bodywork and Movement Therapies.
  4. Tamcan, O., Mannion, A. F., Eisenring, C., Horisberger, B., Elfering, A., & Müller, U. (2010). The course of chronic and recurrent low back pain in the general population. Pain150(3), 451-457.
  5. Knecht, C., Humphreys, B. K., & Wirth, B. (2017). An Observational Study Recurrences of Low Back Pain During the First 12 Months After Chiropractic Treatment. Journal of manipulative and physiological therapeutics40(6), 427-433.
  6. Downie AS, Hancock MJ, Rzewuska M, Williams CM, Lin CW, Maher CG. Trajectories of acute low back pain: a latent class growth analysis. 2016;157(1):225-234
  7. Bekkering GE, Hendriks HJ, van Tulder MW, et al. Prognostic factors for low back pain in patients referred for physiotherapy: comparing outcomes and varying modeling techniques. Spine (Phila Pa 1976). 2005;30(16):1881-1886.
  8. Panjabi, M. M. (1992). The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. Journal of spinal disorders5, 383-383.
  9. Cramer, G. D., Gregerson, D. M., Knudsen, J. T., Hubbard, B. B., Ustas, L. M., & Cantu, J. A. (2002). The effects of side-posture positioning and spinal adjusting on the lumbar Z joints: A randomized controlled trial with sixty-four subjects.Spine,27(22), 2459-2466.Evans, D. W. (2002). Mechanisms and effects of spinal high-velocity, low-amplitude thrust manipulation: Previous theories. Journal of Manipulative and Physiological Therapeutics, 25(4), 251-262.
  10. Haavik, H., Niazi, I. K., Jochumsen, M., Sherwin, D., Flavel, S., & Türker, K. S. (2016). Impact of spinal manipulation on the cortical drive to upper and lower limb muscles. Brain Sciences7(1), 2.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Read 5782 times Last modified on Tuesday, 20 November 2018 11:39


Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn

More Research